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Abstract  

In relation to soil, rock is usually extremely strong, with a compression strength that will 
seldom be mobilized, even in deep tunnels. Intact rock may also have cohesion that is so 
high that it makes mountain avalanches rare events. Frictional strength tends to be high as 
well, due to the big contribution of dilation unless the rock has high porosity. The weakest 
link of the intact rock is of course it’s tensile strength. It is realized now that Poisson’s ratio 
also plays a major role in failure, as even rock under 3D compression can fail in tension due 
to the mechanism of extensional strain in the direction of a free surface. This is an important 
morphological property. Naturally if the rock is jointed, there are usually massive changes in 
strength and stability and slope height, in relation to slopes in intact rock. Failure may be 
progressive in nature, involving several components. In this paper all these aspects will be 
explored utilizing deep tunnels, and then the maximum heights of cliffs and mountain walls. 
The apparent 8 to 9km height limit of mountains will also be addressed using critical state 
shear strength arguments, since confined compression strength is too high. 

Keywords: Extensional strain, shear strength criteria, deep tunnels, mountain walls, 
mountain heights 

Sažetak  

U odnosu na tlo, stijene su uobičajeno iznimno velike čvrstoće, s tlačnom čvrstoćom koja se 
rijetko dostiže, čak i u dubokim tunelima. Intaktna stijena također može imati i koheziju koja je 
toliko visoka da se planinske lavine događaju rijetko. I trenje teži visokim vrijednostima zbog 
velikog doprinosa dilatancije, osim u slučaju stijena visoke poroznosti. Najslabija karika 
intaktne stijene je, naravno, njezina vlačna čvrstoća. Prema novijim saznanjima, i Poissonov 
omjer ima važnu ulogu u pojavi loma, jer se čak i u stijeni u uvjetima 3D kompresije može 
dogoditi vlačni lom uslijed mehanizma razvoja vlačnih deformacija u smjeru slobodne 
površine. To je važno morfološko svojstvo. Naravno, ako su u stijeni prisutni diskontinuiteti, 
uglavnom postoje znatne promjene čvrstoće, stabilnosti i visine padine u odnosu na padine 
u intaktnoj stijeni. Lom po prirodi može biti progresivan, uključujući nekoliko komponenti. U 
ovom radu će se istražiti svi ovi aspekti koristeći duboke tunele, a potom i najveće visine 
klifova i litica. Očigledno ograničenje visine planine na 8 do 9 km također će se obrazložiti 
koristeći argumente kritičnog stanja posmične čvrstoće, budući da je tlačna čvrstoća u 
uvjetima spriječenog širenja previsoka. 

Ključne riječi: Vlačna relativna deformacija, kriterij posmične čvrstoće, duboki tuneli, 
litice, visine planina  



 

 

Failure in deep tunnels 

Two empirical methods for assessing the 
onset of fracturing in deep tunnels in 
massive rock represent the starting point for 
this wide-reaching exploration of failure 
modes and the ‘strength’ of rock masses. 
Since we will first consider massive or 
unjointed rock in deep tunnels, we can 
utilize the classical (Kirsch) formulation for 
estimating the maximum tangential stress 
( max) in two diametrically opposite loca-
tions surrounding an idealized circular 
tunnel cross-section, excavated or bored in 
an isotropic elastic medium: ( max = 31-3).  

Table 1 illustrates an SRF (stress reduction 
factor) table from the Q-system (Grimstad 
and Barton, 1993) for comparison with a 
later, closely related ‘depth-of-failure’ figure 
from Martin et al. 1998 shown in Figure 1. 

 

Table 1.The sixth Q-parameter: SRF adjusts the Q-
value for the effect of adverse (or benign) ratios of 
tangential stress in relation to uniaxial strength. 

 
 

Table 1 and Figure 1 (top) are telling us the 
same story from independent sources: 
expect failure when reaching and passing a 
maximum tangential stress/unconfined 
strength ratio (𝜎𝜃 𝑚𝑎𝑥/𝜎𝑐) = 0.4 ± 0.1 . The 
photographs in Figure 1 show fully 
developed log-spiral shearing in a 
sandstone model (Addis et al. 1990) and 
fracture initiation in a TBM tunnel in marble.  

These are examples of the propagation of 
initial extension fracturing into shearing, 
which may become unstable signalling the 
possibility of rock bursts at even higher 
stress levels (Shen and Barton, 2018). 

 

 

 

 

 

      

 
 

Figure 1. The accelerating SRF ratings (giving lower 
Q and more reinforcement) when the ratio  /c 
reaches and exceeds 0.4 (Table 1) is matched by 
the independently derived mining and nuclear 
waste research data concerning depth of 
fracturing (Rf -a) from Martin et al. 1998. 

As will be seen from Figure 2, the critical 
tangential stress can alternatively be 
expressed as (t/). If we assume typical 
ratios of uniaxial compression/tensile 
strength (c/t) of 10, and typical values of 
Poisson’s ratio () of 0.25, simple arithmetic 
shows that the ratio of tensile strength and 
Poisson’s ratio (t/) is equal to 0.4  c. This 
is the same approximate stress/strength 
ratio seen when acoustic emission begins to 
increase in laboratory tests. 

 

 



 

 

 

  

Figure 2. An imaginary rock sample in the arch of a 
deep tunnel, subjected to a horizontal maximum 
tangential stress in the arch due to high horizontal 
stress. Baotang Shen was responsible for noticing 
the critical stress-strain interpretation which 
explains the familiar ratio of stress/strength of 0.4. 
(See Shen and Barton, 2018 for more detail). 

Figure 3 shows the FRACOD modelling of a 
‘stressed’ (and strained) TBM tunnel, with 
initial extension fractures propagating in 
shear. The massive wall failures in this 
earliest of TBM tunnels occurred due to an 
unusually abrupt increase in stress (+ strain). 

 

 

Figure 3 The Beaumont (or English) Tunnel driven in 
1880, showing failure in the 8 to 10 o’clock and 2 to 
4 o’clock locations due to an increase in vertical 
stress when this earliest TBM tunnel (in chalk marl) 
passed under the 70m high Shakespeare Cliffs 
(UK). The FRACOD modelling with assumed 
horizontal-to-vertical stress ratio of 1/3 was 
performed by Baotang Shen. (Barton and Shen, 
2017). 

Theoretical heights of cuttings and 
cliffs  

We will now consider the stability and 
failure modes exhibited at the surface, 
firstly for the case of cuttings in soil, then 
address cliffs (in weaker rock) and mountain 
walls (in stronger rock). In place of the 
Kirsch equations for tangential stress 
concentrations surrounding circular TBM-
like excavations, we can now consider the 
local principal vertical stress behind a 
cutting or cliff or mountain wall. This can be 
compared with a measure of the strength of 
the soil or rock in the same way as before. 

 

 

The likelihood (or not) of failure along an 
inclined shear surface exiting at the toe of 
the slope will also be assessed. Both the 
stability of steep cuttings (in soil) and the 
stability of (sea and river) cliffs in rock might 
at first sight appear to be governed by 
conventional Mohr-Coulomb based shear 
resistance involving cohesion (c) and friction 
angle (), but with differentiation of these 
strength parameters to allow for the 
weakness of soil and the relative strength of 
most rocks. 
 

Soil mechanics text books show lower-
bound and upper-bound solutions for the  



 

 

 

 

Figure 4. Top: The equilibrium assumptions for the 
three zones gives a lower-bound solution. Bottom: 
An assumed planar shear surface gives an upper-
bound solution. The critical height (h) therefore 
varies between wide margins 4c/ tan (45 + /2) ≥ 
h ≥ 2c/ tan (45 + /2) with a circular failure 
surface giving a solution closer to the upper-bound 
with a multiplier of 3.85. Verujit, 2001.  

 

stability of vertical cuttings, based on c and 
also , utilizing the two different 
assumptions illustrated in Figure 4. 
 

Equations 1 and 2 summarize the limits of 
the soil-based criteria. It seems that an 
exact solution to the vertical cutting 
problem is elusive, even when utilizing a 
linear Mohr-Coulomb strength envelope. In 
the case of high mountain walls one would 
need a stress dependent ‘Mohr-Coulomb’ 
modification. However, as we shall see, the 
weakest link that actually determines the 
maximum height of cliffs or mountain walls 
in (intact) rock depends on two entirely 
different parameters than c and .  

ℎ ≥ 2𝑐 𝛾⁄  𝑡𝑎𝑛(45° + 𝜑 2⁄ ) (1) 

ℎ ≤ 4𝑐 𝛾⁄  𝑡𝑎𝑛(45° + 𝜑 2⁄ ) (2) 

If we do a trial evaluation of potential c and 
 values for intact rock, using a lower-
bound estimate of cohesion from equation 

3 shown below Figure 5, we find very 
quickly that the soil-cutting based solutions 
of Figure 4 that work for soil with its 
relatively low cohesion, result in far too high 
values of critical height (i.e. the maximum 
possible vertical height) in a range of rocks 
we are familiar with. The cohesive strength 
of intact rock is apparently too high unless 
the vertical slopes are very high, Experience 
suggests alternative failure modes kicking in 
at smaller cliff or wall heights: in fact failure 
is due to extensional strain, or the 
involvement of jointing. 

 

Figure 5. For estimating a lower-bound value of 
cohesion we can use the formulation that assumes 
a linear tangent between the tensile and 
compression circles, as in equation 3. (Barton, 
1976). 

𝑐 = 0.5(𝜎𝑡 ∙ 𝜎𝑐)0.5 (3) 

The logic behind an actually significantly 
curved failure envelope for intact rock was 
not only the consistent curvatures of 
numerous high pressure triaxial strength 
tests reported by Mogi, 1966 but also the 
finding of Singh et al. 2011 that the uniaxial 
strength Mohr circle is most frequently a 
virtual or actual tangent to the critical 
confining pressure 3 defining the maximum 
possible strength 1 in this figure from 
Barton, 1976. 

The near-vertical cliffs in the weak materials 
illustrated in Figure 6 can be given assumed 
(saturated) strength values in the range t =  



 

 

 

 

Figure 6. Cliffs in weak materials: tuff in 
Cappadocia, Turkey and weak sandstone-
limestone in Dorset, England. Judging by the 
surface roughness, these failures cannot be 
attributed to the opening of vertical jointing. (Such 
would have caused cliff failures long ago). Suitable 
estimates of (saturated) rock compressive and 
tensile strengths, partly based on test results from 
Aydan and Ulusay, 2003 could be the following: 
Top: Cappadocia cliff, 20m high next to the 
Christian church, tuff: c = 5MPa, t = 0.5MPa. 
Bottom: Burton cliffs, Dorset 40m high, weak 
sandstones and limestones. Estimated c = 2MPa, 
t = 0.2MPa.                                     

0.2 to 0.5 MPa, and c = 2 to 5 MPa for 
simplicity. Using these ranges of tensile and 
compression strengths, cohesional 
strengths (suitably rounded) as low as 0.3 
and 0.8MPa can be estimated with the 
above linear lower-bound envelope (see 
Figure 5 caption).  

The ratio of the compression to tensile 
strength Mohr circle diameters generates a 
presently assumed linear solution for 
internal friction angle  as follows:  c /t = 
tan2 (45 + /2). When the ratio of strengths 
is 10 as assumed for simplicity, this gives  = 
56. 

The lower-bound soil mechanics based 
relationship h ≥ 2c/ tan (45 + /2) following 
suitable adjustment of units (MPa x 1000 for 
conversion to kN/m2 so that density can be 
expressed in kN/m3) gives predictions of 
critical cliff heights of approximately 100m 
and 260m, i.e. far higher than the reality that 
is probably closer to a 20-60m range. The 
upper-bound solutions (equation 2) would 
be 200m and 520m. 

Theoretical heights of mountain walls 

We will now increase the assumptions 
about the strength of rock so as to attempt 
to address steep mountain walls, using the 
same unsuitable Mohr-Coulomb based 
formulations as outlined in Figure 4. Again, 
using deliberately simple numbers, and 
considering stronger sandstone and granite, 
we may assume the following approximate 
ranges of t = 5 to 10MPa and c = 50 to 
100MPa.  

The lower-bound solution for cohesion 
(assuming linear tangents with the t and c 
Mohr circles, Equation 3, Figure 5) gives 
estimates of cohesion for the stronger 
sandstone and granite of about 8 and 
16MPa. These are too high to allow major 
rock avalanches, unless the vertical walls 
could be much higher. They usually cannot 
be, since failure occurs by different 
mechanisms, involving extension strain due 
to Poisson’s ratio, and an anisotropic stress  

Using the assumed higher strength values 
shown in Figure 7, and tensile/compressive 
strength ratios of 1/10 again, and the same 
lower-bound soil mechanics based 
relationship h ≥ 2c/ tan (45 +  /2), 
following suitable adjustment of units (MPa  

 



 

 

 

 
 

Figure 7. Mountain walls of almost record height in 
sandstone and granite are illustrated. Top: West 
Temple, 750m high, Zion, Utah formed of 
sandstones, with a conservatively assumed in situ 
saturated UCS = 50MPa. Bottom:  Mirror Wall, 
1,200m high, Greenland which we assume is 
formed of granite with a conservative in situ 
saturated UCS = 100MPa.  

x 1000 for kN/m2 and density expressed in 
kN/m3), we obtain predictions of critical. 
mountain wall heights of approximately 
2070m and 3700m, i.e. far higher than the 
reality (Figure 7) that is closer to a 750-
1250m range. This time we have assumed 
rock densities higher than for the soft rocks: 
2.5 and 2.8 t/m3 or approximately 25 and 28 
kN/m3.  

A new criterion for heights of 
cuttings, cliffs and mountain walls 

When assessing the likely onset of failure in 
deep tunnels (Table 1 and Figure 1 show the 
details) we started by comparing maximum 
tangential stress and the uniaxial strength, 
based on the simplifying assumption of 
isotropic elastic behaviour – but applied 
nevertheless to explore the onset of 
fracturing. It was found (by Baotang Shen) 
that the ratio of tensile strength and 
Poisson’s ratio (t/) was a more correct 
description than the principal stress-
induced fracture limit i.e. the well-known 
fraction of compression strength (0.4 c). 

Fracturing actually starts due to extension 
strain, but this fracturing may propagate in 
shear, creating classic log-spiral shear 
surfaces (Figure 1, centre) if stress levels are 
high enough. The latter is not possible 
behind steep mountain walls because 
stress levels are not high enough, as 
extension fracturing is likely to initiate when 
heights are much less. 

Since the application of Mohr-Coulomb 
shear strength to the failure of rock cliffs 
and mountain walls is clearly not working 
for intact rock, because of the ultra-high 
cohesion as compared to soils, we will test 
the Shen t/ criterion ‘in the vertical plane’ 
(not along a potential shear plane), and 
simply equate it to an estimate of the major 
principal stress behind a vertical cliff or 
mountain wall. For simplicity we will 
assume v max =  H where  is the density. 
Equating the major stress and the failure 
criterion we obtain for the critical, maximum 
height Hc the simplest imaginable equation: 

𝐻𝑐 = 𝜎𝑡 𝛾⁄  (4) 

If we employ strength units of MPa, then the 
usual vertical stress estimate of v = H/100 
means that a multiplier of 100 is needed: 

𝐻𝑐 = 100 𝜎𝑡 𝛾⁄  (5) 



 

 

In Table 2 the Mohr-Coulomb derived 
maximum cliff and mountain wall height 
estimates (given in blue), are much too high 
compared with the extension-strain derived 
critical heights (given in red), based on the 
simple estimate of maximum vertical stress 
behind such walls. The red estimates are 
more in line with empirical evidence, but 
perhaps slightly high, suggesting that 
tensile strength is gradually reduced by the 
‘infinite’ number of temperature cycles and 
wetting and drying cycles in the out-door 
environment on the surface of and behind 
these high rock walls. This cycling of 
temperature does not of course apply in the 
case of t/ application in tunnels. 

Table 2. Comparison of Mohr-Coulomb derived and 
extension-strain derived critical vertical cliff and 
mountain wall heights with given assumptions. 

  

 

We can envisage that the slab failure 
sketched by Melosh, 2011 in Figure 8 would 
be a partial simulation of the t/ extension 
failure mechanism, when occurring in 
mostly intact massive rock. 

The rock avalanche envisaged by Melosh in 
Figure 8 (bottom right) is likely to be a rare 
event, unless ‘structure’, as sketched in 
Figure 9 can develop over extended time, 
to make reduced areas of ‘rock bridges’ for 
shear failure to be finally possible, thereby 
counter-acting the usually too high 
cohesive strength of intact rock, as 
enumerated earlier.  It is concluded that the 
rock avalanche mode is likely to be very 
rare in the case of massive hard rock, simply 
because shear stress will usually be 
insufficient to over-come the ultra-high 
cohesive strength of intact rock. The 
condition needed can perhaps be found in 
high mountains, and is fortunately rare. 

 

 
Figure 8. Top: Two examples of the principal 
(vertical) stress distribution in the case of near-
vertical or vertical walls from Wolters and Müller, 
2008. Bottom: Two of the failure modes in rock 
envisaged by Melosh, 2011 

 

   

 
 

Figure 9. Sketches of slabbing mechanisms and 
joint propagation: responsible for large scale 
failures at the front of steep, high, mountain walls. 
Discontinuous, adversely oriented jointing that is 
under slope-induced shear stress might gradually 
propagate. JRC and JCS (and r) might then play 
an important role. See ‘whitest’ plane in Figure 10. 



 

 

The details sketched in Figure 9 include the 
implication that extension failures cause the 
slabbing mechanisms that slowly degrade 
largely unjointed mountain walls. Seasonal 
and daily temperature variations gradually 
degrade the tensile strength of the intact 
rock, while ice-wedging (and joint water 
pressure) will naturally be the dominant 
mechanism if discontinuous jointing is 
already present. El Capitan has all modes. 

The lower sketch in Figure 9 explores the 
possible slow propagation of potential 
shear failure planes that could allow a rock 
avalanche to develop, despite a generally 
too high cohesive strength for the intact 
rock. Figures 10 and 11 illustrate two such 
mechanisms in different stages of 
development. In the case of El Capitan a 
major failure is extremely remote. 

 
 

Figure 10. El Capitan in Yosemite, California which 
is the most climbed rock wall in the world, with a 
height varying from about 900-950m. (Record 
ascent times are just under 2 hours, and just under 
4 hours for a unique free-solo by Alex Honnold). 

It has been envisaged by those reviewing 
the origin of sheeting joints (e.g. Martel, 
2017), that their frequent curvature, as seen 
for instance on the upper slopes of the Half 
Dome in Yosemite, is due to tensile stress 

 
Figure 11. Holtanna, a 750m high monolith, in 
Dronning Maud’s Land, Antarctica. The potential 
(imminent?) failure plane appears to dip at approx. 
40 degrees. Extract from a Getty iStock image. 

 

that can be generated by temperature 
cycling. This mechanism is not doubted. 
However, extension strain mechanisms can 
act very effectively on planar (i.e. mountain 
wall) surfaces as well, with the help of 
Poisson’s ratio reacting to the marked stress 
anisotropy. The cycling of temperature is 
responsible for the gradual reduction of the 
tensile strength, and is an important 
geomorphological component of failure, 
aided by Poisson’s ratio. 

 

 
Figure 12. Alex Honnold (‘Alone on the Wall’, 
Honnold & Roberts, 2016) exploiting (assumed) 
extension fractures on Half Dome and El Capitan. 



 

 

 
Figure 13. USA’s free-solo ace Steph Davis 
exploiting extension fracture holds. (Davis, 2013. 
Learning to fly: An uncommon memoir etc.) 

 

The world-famous free solo climbers Alex 
Honnold and Steph Davis from the USA 
may be utilizing extension fractures (rather 
than rock joints) in much of their free-solo 
climbing, because rock joints would be 
likely to have degraded a mountain too 
quickly when for instance the glacial 
support (as in cirques) retreated during the 
last formative ice-age. The extension crack 
surfaces can be continuous for 100’s of 
meters, both horizontally and vertically, and 
can presumably develop in the third 
dimension if the slope-parallel horizontal 
stress is limited by a local free face. The 
long cracks are the focus of a large number 
(and size) of rock climber’s camming 
devices for temporarily wedging in these 
cracks – but finger-tips, fingers, hands, 
clenched-fists, arms, feet and bodies are 
the ‘cams’ used by the free solo climbers, 
whose progress is faster without ropes. 
Refer to Davis, 2013, and Honnold and 
Roberts, 2016 for numerous very fine 
photographs of planar extension fractures. 

Complications from multi-component 
failure-modes 

Before leaving the proposed extension 
failure mode, which has been shown in 

Table 2 to more accurately describe the 
limiting heights of cliffs and mountain walls, 
it is necessary to address another class of 
slope/wall stability conditions. It has 
already been hinted that well-developed 
jointing will not generally be compatible 
with (semi-) stable steep slopes, because 
degradation involving failure along the 
joints would likely be so fast that the front-
lying screes of joint-delineated blocks 
would have prejudiced the long-term 
existence of the mountain wall (or sea cliff).  

For example, the scree of fallen blocks 
might be hundreds of meters in vertical 
extent, while the remaining mountain has 
become a residual and steadily reducing 
cliff now only 50 to 100m high. There are 
many examples of such degraded walls, 
aided by ice-wedging, water and water 
pressure, especially in well-jointed (Jn ≥ 9, 
three joint sets or more) hard quartzites. 

In this section of the paper we will briefly 
address the stability and (perhaps) ultimate 
failure of slowly degrading mountain walls, 
of which there are some well-known 
examples in the glaciated fjords and steep 
valleys of Norway. They have presumably 
degraded at varying rates (faster at first) 
following the retreat of the ice. A longer-
term pseudo-stability depends on the 
presence of less developed jointing and 
depends on significant ‘stretches’ or 
‘bridges’ of intact rock. A fine example from 
Norway is shown later. Stability also 
depends on the relative absence of clay-
filled features, at least an absence of 
adversely oriented discontinuities of this 
type.  

The three strongest shear strength 
components illustrated in Figure 14 
symbolically involve the strength of intact 
rock (the ‘bridges’), followed by shearing 
along these newly created surfaces which 
are likely to have high JRC and high JCS (≈ 
UCS) and r  b due to a likely lack of 
weathering. These components were 
introduced in Barton, 1973 and refined in 
Barton and Choubey, 1977. The third shear 
strength component is the rock joints, which 



 

 

are likely to be favourably oriented if there 
is pseudo-stability, or not very continuous, 
because they will tend to have significantly 
reduced values of JRC, JCS and r When 
performing distinct element modelling with 
partially developed (even numerically-
glued) jointing, it may be important to 
ensure that the shear strength input data for 
the continuous portions of the joints are 
suitably scaled for block size. The latter 
may be very large in the case of pseudo-
stable slopes/mountain walls, so scale-
effects will be a source of potential error.  

Note that the shear stiffness ks of joints, 
which is doubly scale-dependent (peak 
strength reduction and displacement-to-
peak increase) may be as low as 1-
5MPa/mm. In fact at low normal stress 
levels it can be < 1MPa/mm. The normal 
stiffness kn of rock joints is much higher and 
is less prone to scale effects (Bandis et al., 
1983, Barton, 2006). 

The shear resistance of the rock mass 
through which a steep slope is artificially 
cut (or glacially gouged) can cause the new 
slope to fail immediately when glacial 
support is lost, or to be moderately stable if 
there are no continuous failure surfaces 
along the existing joint sets. In a rock 
engineering context, bolting and/or 
anchoring during downwards excavation 
can obviously ensure stability. 

 
 

Figure 14. The four principal shear strength 
components of jointed rock masses. If rock joints 
are non-planar, three will be non-linear curves. 

A large rock slope, for instance an open pit, 
may depend for its stability on all four of the 
illustrated strength components: 1. Strength 
of intact ‘bridges’. 2. Shearing (or not) on 
these new, fresh, rough surfaces. 3. 
Mobilization (or not) along an already 
existing joint plane. 4. Finally the usually 
limited strength of any clay-filled 
discontinuities or faults, which have the 
lowest shear stiffness (Barton, 1999, 2013). 
 

Table 3. Non-linear approximations to the three 
shear strength components: intact rock, new 
fractures, and rock joints. Barton, 1976, 2013.  
 

X                 Y                Z 

 

 

 
 

The four potential strength components 
(which must include clay-filled 
discontinuities) might, if one was close-by 
during failure, be heard as ‘bang’, ‘crunch’, 
‘scrape’, ‘swoosh’ : i.e. a progressive and 
process-dependent shear failure. Neither 
M-C (linear) ‘c + ’n tan ’, nor H-B (non-
linear) ‘c + ’n tan ’, but ‘c then n tan ’ – or 
the above x, y, z non-linear equivalents (# 1, 
2, 3 and 5) are likely to be most correct, and 
would be consistent with the observation 
(and monitoring) of progressive failure. 
Computational simplicity (conventional 
linear M-C) or GSI-based H-B provides 
‘solutions’, but the reality is often different. 

A famous tourist attraction in S.W. Norway, 
600m above the Lysefjord is called 
Prekestolen (‘pulpit’). A major tension crack 
and a back-wall plane of weakness 
‘combine’ to throw a likely elevated shear 
and vertical stress onto a presently intact 
‘toe’ somewhere near the white arrow about 
200m below the ‘lectern’. The big question 
in relation to the theme of multi-component 
shear resistance: will there be initial shear 



 

 

failure or extension failure: c + tan , c then 
tan , or a likely t/? The principle ‘rock 
engineering’ components (joint planes) of 
Prekestolen are shown in Figure 15 and 
include an unusual cyclic ‘micro-loading’ 
from a widely varying number of tourists. 
 

 

 
 

Figure 15. a, b, c, d. Prekestolen in S.W. Norway, 
600m above the Lysefjord. Three of these 
photographs were kindly provided by Katrine Mo 
from a comprehensive MSc. thesis concerning the 
stability of this challenging ‘monolith’. 

 

 
 

The white arrow in the above photograph is 
located in a region where the vertical stress 
may be strongly concentrated, due to the 
jointing through the upper levels of rock. 



 

 

The limited height of the world’s 
highest mountains 

There are fifteen mountains in the world 
with heights in the rarified range of 8 to 
9km. The highest of these is Everest at 
approximately 8,848m. An extract from a 
Wikipedia photograph is shown in Figure 16.  

Since we are concerned with the ultimate 
strength of rock one can pose the question: 
why are the highest mountains no higher 
than 9km? Have mountains ever been 
higher than this during the earth’s history? 
Since plate tectonics has been at work for a 
very long time, and contrary glacial 
processes during ‘infinite’ millenia also, one 
can perhaps assume that the extensive 
‘empirical evidence’ that we see today is 
also a reflection of what has been in the 
distant past. The strength of rock has little 
reason to have changed either, though it 
could be higher today, if the geothermal 
gradient had declined significantly. 

In a well-known article written by Terzaghi 
(1962) near the end of his life: ‘Stability of 
steep slopes on hard unweathered rock’, a 
simple formulation of critical slope height 
was suggested: H = q/, where the uniaxial 
strength of rock and the vertical stress 
caused by its density are compared. The 
assumed vertical stress is estimated to be 
H (or H/100 if using familiar MPa units as 
in rock mechanics). One can also use units 
kN/m2 and kN/m3 for the rock strength and 
density.  

This formula was not evaluated in the 
section concerning limited cliff heights and 
mountain walls since it (also) produces a 
strongly exaggerated result, and Terzaghi 
was quick to point out in the same 1962 
article that the adverse effect of jointing 
must be the reason that ‘critical slope 
heights’ were not in practice as high as this 
formula was suggesting. The reason 
(besides jointing) is that in the case of 
massive intact rock, there are alternative 
mechanisms of rock failure: possibly even 
shear failure when stress levels are high. 

 
Figure 16. Mount Everest, 8,864m (Wikipedia photo 
extract). Note that the peak of Everest is 
immediately behind the peak showing possible 
curved ‘shear-planes’. (This cannot be tilted 
bedding with such a huge variation in thickness.). 

 

Misuse of the ‘Terzaghi’ formula: hc = c/ 
(equation 6) gives an apparently correct 
answer for maximum mountain heights (e.g. 
100 x 250/2.8 = 8.9km). The problem is that 
it has to be the confined strength of rock at 9 
km depth, and this is much too high. 

ℎ𝑐 = 𝜎𝑐 𝛾⁄  (6) 

Application of a typically high value of 
uniaxial compression strength of rock in the 
case of ultimate mountain height estimation 
is a ‘popular’ method that is also shown in a 
Google ‘chat-site’. The problem is that the 
rock involved in ‘stabilizing’ the vertical 
effective stress generated by the mountain, 
cannot possibly be the unconfined strength 
at e.g. 9km depth. It must be the confined 
compressive strength. We would then have 
impossible 30km high mountains.  

Correct logic suggests that mountains are 
of ‘limited’ height due to a lower (critical 
state) shear strength, which may also be 
approximately 200-250 MPa. Inspection of 
Figures 18 and 19 gives simple confirmation 
that the indicated value of 1 (see right-hand 
side of largest Mohr circle) would be much 
too high in relation to c. On the other hand, 
the maximum shear strength is of similar 
magnitude (or equal) to the uniaxial 
strength. (See Barton, 1976 and Singh et al. 
2011, and the recent article by Shen et al. 
2019). Observation of the strong curvature 



 

 

 

Figure 18. The strong curvature of this and other 
sets of high-pressure triaxial data from Mogi, 1966 
was the direct reason for a critical state proposal. 

of the shear strength of intact rock at high 
confining pressure, as reviewed by Barton, 
1976 with this example from Mogi, 1966 
(Figure 18) was the reason for proposing a 
critical state maximum possible shear 
strength (Figure 19). 

Since then, an important study of more than 
1,000 triaxial tests was performed by Singh 
et al. 2011, who verified that the majority of 
rocks exhibited the close proximity, if not 
the equality, of the UCS Mohr circle and the 
critical confining pressure needed to reach 
the critical stress (see c and 3 sides of 
adjacent Mohr circles in Figure 19). Since c 

is approximately numerically equal to max 

(note the equality of diameter and radius in 
Figure 19), we have an explanation for the 
high, but none the less limited shear 
strength of potential failure planes deep 
below the world’s highest mountain chains. 

The consequences of the strong curvature 
of shear strength envelopes, actually 
stronger curvature than that of the Hoek-
Brown criterion for intact rock, have been 
further investigated by Shen et al. 2018, who 
demonstrated with the FRACOD fracture 
mechanics code (Shen et al. 2013) that a 

somewhat larger volume of rock would be 
fractured as a result of tunnel siting at 1 or 
2km depth, as compared to the fracturing 
depth modelled with conventional models 
of shear strength.  

Shen managed to formulate relatively 
simple equations with recognisable input 
parameters, to describe both the tensile 
and compressive side of the non-linear 
shear strength. Recently we gave examples 
of typical strength envelopes (Shen et al. 
2019) as illustrated in Figure 20. 
Approximate (numerical) conversion by Shi 
to the format 1 versus 3 shown in Figure 
21, reinforces the impossibility of using the 
confined compressive strength of rock to 
estimate mountain height limits. 

 

 
 

Figure 19. The critical state suggestion of Barton, 
1976. Note the proximity of UCS (or c) and the 
critical confining pressure 3. Singh et al. 2011 found 
that c and 3 had equal or very similar magnitude. 

 

Shen and Shi are responsible for the 
generation of the four example strength 
envelopes shown in Figure 20. These were 
evaluated based on Shen’s recent 
formulations for the tensile and 
compressive regions of the strength 
envelope. The input data was suggested by 
the writer, so that the critical state theory of 
1976 could be more easily understood as a 
logical and very simple strength criterion. 
Note the touching Mohr circles for each set. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

When the shear strength envelopes are 
converted to the form 1 versus 3 the 
impossibility of mountain height estimation 
using equation 6 is further emphasised by 
the high values of (1 – 3) at relevant sub-
mountain depths of 8 to 10km. 

 
Figure 21. The confined compressive strength for 
rocks at e.g. 9km depth, where the confining 
pressure 3 might be of the order of 2.8 x 9,000/100 
= 250 MPa, or perhaps higher due to the tectonic 
thrust against the Himalayas, where most of the 
highest peaks are found. This suggests that 1 – 3 
will be much too high to explain ‘only’ 8 to 9km 
maximum mountain heights. Shen et al. 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some brief observations about karst 
 

This paper has so far been devoid of 
comments about engineering and 
geotechnical problems in karstic regions. A 
relatively limited involvement in such 
engineering challenges, such as a single 
leaking surge tunnel, and opposite ends of 
a TBM tunnel, does not qualify for extensive 
comment here, Nevertheless, a fascination 
with the phenoma of karst, such as the 
relative lack of soil on mountain slopes in 
limestones, and the remarkable local 
permeabilities, have not passed unnoticed, 
and three or four photographs from 
southern Greece will now be commented, 
to emphasise simple lessons learned.  
 

As all involved with karst know well, the 
usual range of magnitudes of geotechnical 
parameters, such as three orders of 
magnitude for shear strength and 
deformability, and at least six orders of 
magnitude for permeabiity, are made 
nonsence of in karstic terrain. 

 

 

   

Figure 20. Example non-linear shear strength envelopes developed from four sets of input data (see 
inset table) using the tensile-region and compression-region equations recently suggested by Shen. 

 

 



 

 

  

      

Figure 22. A limestone hand specimen with four 
jointed sides and a solution channel through each. 
Turned appropriately, a karstic 'joker' is revealed. 

 

 

 
 

Figure 23.. A minor demonstration of outflow from 
karstic channels in a hillside, from Altamira in 
southern Greece, following a rain-storm at Prof. 
Stavros Bandis's mountain, book-writing retreat. 

 

For instance, an exceptionally high rock 
mass permeability of 10-4 m/s (i.e. an almost  
impossible to measure 1,000 Lugeons, or 
1,000 litres/min/'per meter' of borehole) 
could occasionally be the equivalent of 101 

or even 102 m/s in the case of karst-cavern 
inrush into tunnels, 'adding' four or five 
orders of magnitude to 'k'. 

Back-filling with concrete and pre- or post-
injection might be a tunnelling solution if 
the karstic void is small enough, as in Figure 
23, but only when in-flow has almost 
stopped, which might be a very long time. 
'Expect the unexpected' would seem like 
the best advice when tunnelling in karstic 
terrain, and over-lapping multiple probe-
drilling ahead of TBM through limestone 
stretches is always advised,  

Sudden inflows of 1 and even (river-scale) 
4m3/sec may cause one year or more 
tunnelling delays, as experienced in the 
Zagros mountains in Iran. Occasionally a 
bridge might be needed to transport a TBM 
back into rock on the other side of a 
cavernous void. Inundation by fines, or 
drowning by water are both possible, and 
are sometimes experienced in combination 
or succession. 

Conclusions 

1. Tensile strength and Poisson’s ratio 
explain the limited maximum heights of 
cliffs and steep mountain walls, and the 
origin of planar sheeting joints. A range of 
maximum heights from 20m in tuff, 100m in 
chalk, 750m in sandstone, to 1,300m in 
granite can be sensibly quantified by 
considering failure caused by extensional 
strain in each case. Mohr-Coulomb shear 
strength parameters give incorrect results 
for intact rock, in the context of steep 
slopes. 

2. There are parallels in the world of deep 
tunnels in hard rock. The widely quoted 
critical tangential stress of 0.4 x UCS that 
may be reached by deep hard-rock 
tunneling can be replaced by the ratio t/, 
representing initial tensile failure which is 
mobilized by extensional strain. These two 
ratios are numerically equivalent. At higher 
stress levels, tensile fractures may 
propagate in unstable shear, meaning 
potential rock bursts.  

3. Shear strength and tensile strength (ably 
assisted by Poisson’s ratio) are inevitably the 
weakest links in ‘high-stress’ structural 
geology and in ‘low-stress’ geomorphology, 
respectively. 



 

 

4. Rock slopes with discontinuous rock 
joints may reach failure if several shear 
strength components are mobilised/over-
come one-by-one in a progressive manner. 
Recall: crack, crunch, scrape, swoosh as a 
reminder of a non-Mohr-Coulomb event. 

5. The highest mountains of 8 to 9km are 
most likely to be limited by maximum 
possible, critical state shear strength, not by 
compressive strength, because the 
confined strength of competent mountain-
forming rock is at least two times too high. 
Mountains cannot be 20-25km high. 

6. The usual three or more orders of 
magnitude range of geotechnical 
parameters, such as shear strength, or 
deformation modulus, or tunnel 
deformation, with perhaps six orders of 
magnitude range for permeability are made 
to look minor by karst inrushes to tunnels. 
The usual log-scale permeability units of 
m/s may experience a quantum leap, from 
negative to positive components. 
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